3,595 research outputs found

    Pulsar State Switching from Markov Transitions and Stochastic Resonance

    Full text link
    Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spindown rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic time scales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38±538\pm5 days in a 13-yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from an equatorial disk that may also cause the neutron star to episodically charge and discharge. Orbital perturbations in the disk provide a natural periodicity for the forcing function in the stochastic resonance interpretation of B1931+24. Disk dynamics may introduce additional time scales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.Comment: 25 pages, 6 figures, submitted to the Astrophysical Journa

    RFI Identification and Mitigation Using Simultaneous Dual Station Observations

    Full text link
    RFI mitigation is a critically important issue in radio astronomy using existing instruments as well as in the development of next-generation radio telescopes, such as the Square Kilometer Array (SKA). Most designs for the SKA involve multiple stations with spacings of up to a few thousands of kilometers and thus can exploit the drastically different RFI environments at different stations. As demonstrator observations and analysis for SKA-like instruments, and to develop RFI mitigation schemes that will be useful in the near term, we recently conducted simultaneous observations with Arecibo Observatory and the Green Bank Telescope (GBT). The observations were aimed at diagnosing RFI and using the mostly uncorrelated RFI between the two sites to excise RFI from several generic kinds of measurements such as giant pulses from Crab-like pulsars and weak HI emission from galaxies in bands heavily contaminated by RFI. This paper presents observations, analysis, and RFI identification and excision procedures that are effective for both time series and spectroscopy applications using multi-station data.Comment: 12 pages, 9 figures (4 in ps and 5 in jpg formats), Accepted for publication in Radio Scienc

    Detection of Bursts from FRB 121102 with the Effelsberg 100-m Radio Telescope at 5 GHz and the Role of Scintillation

    Get PDF
    FRB 121102, the only repeating fast radio burst (FRB) known to date, was discovered at 1.4 GHz and shortly after the discovery of its repeating nature, detected up to 2.4 GHz. Here we present three bursts detected with the 100-m Effelsberg radio telescope at 4.85 GHz. All three bursts exhibited frequency structure on broad and narrow frequency scales. Using an autocorrelation function analysis, we measured a characteristic bandwidth of the small-scale structure of 6.4±\pm1.6 MHz, which is consistent with the diffractive scintillation bandwidth for this line of sight through the Galactic interstellar medium (ISM) predicted by the NE2001 model. These were the only detections in a campaign totaling 22 hours in 10 observing epochs spanning five months. The observed burst detection rate within this observation was inconsistent with a Poisson process with a constant average occurrence rate; three bursts arrived in the final 0.3 hr of a 2 hr observation on 2016 August 20. We therefore observed a change in the rate of detectable bursts during this observation, and we argue that boosting by diffractive interstellar scintillations may have played a role in the detectability. Understanding whether changes in the detection rate of bursts from FRB 121102 observed at other radio frequencies and epochs are also a product of propagation effects, such as scintillation boosting by the Galactic ISM or plasma lensing in the host galaxy, or an intrinsic property of the burst emission will require further observations.Comment: Accepted to ApJ. Minor typos correcte
    corecore